PUBLICATION VII Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles
نویسندگان
چکیده
The article estimates the costs of plug-in electric vehicles (EVs) in a future power system as well as the benefits from smart charging and discharging EVs (smart EVs). To arrive in a good estimate, a generation planning model was used to create power plant portfolios, which were operated in a more detailed unit commitment and dispatch model. In both models the charging and discharging of EVs is optimised together with the rest of the power system. Neither the system cost nor the market price of electricity for EVs turned out to be high (36e263 V/vehicle/year in the analysed scenarios). Most of the benefits of smart EVs come from smart timing of charging although benefits are also accrued from provision of reserves and lower power plant portfolio cost. The benefits of smart EVs are 227 V/vehicle/year. This amount has to cover all expenses related to enabling smart EVs and need to be divided between different actors. Additional benefits could come from the avoidance of grid related costs of immediate charging, but these were not part of the analysis. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Intelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems
The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملResource Scheduling in a Smart Grid with Renewable Energy Resources and Plug-In Vehicles by MINLP Method
This paper presents a formulation of unit commitment for thermal units integrated with wind and solar energy systems and electrical vehicles with emphasizing on Mixed Integer Nonlinear Programming (MINLP). The renewable energy resources are included in this model due to their low electricity cost and positive effect on environment. As well as, coordinated charging strategy of electrical vehicle...
متن کاملModified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...
متن کاملCost and Environmental Pollution Reduction Based on Scheduling of Power Plants and Plug-in Hybrid Electric Vehicles
There has been a global effort to reduce the amount of greenhouse gas emissions. In an electric resource scheduling, emission dispatch and load economic dispatch problems should be considered. Using renewable energy resources (RESs), especially wind and solar, can be effective in cutting back emissions associated with power system. Further, the application of electric vehicles (EV) capable of b...
متن کامل